

'Prenigroxanthin' [(all-E,3R,3'S,6'S)- β , γ -carotene-3,3',6'-triol], a novel carotenoid from red paprika (*Capsicum annuum*)

József Deli, a,* Péter Molnár, a Zoltán Matus, Gyula Tóth, Bruno Traber and Hanspeter Pfander, a

^aDepartment of Medical Chemistry, University of Pécs, Medical School, PO Box 99, H-7601 Pécs, Hungary ^bDepartment of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

Received 1 December 2000; accepted 11 December 2000

Abstract—From the ripe fruits of red paprika (*Capsicum annuum*) prenigroxanthin, a minor carotenoid was isolated and, based on the spectral data and the proposed biosynthesis, identified as (all-E,3R,3'S,6'S)-B, γ -carotene-3,3',6'-triol. © 2001 Elsevier Science Ltd. All rights reserved.

During our investigations of different species of paprika (Capsicum annuum), some novel carotenoids such as cycloviolaxanthin [(3S,5R,6R,3'S,5'R,6'R)-3,6,3',6'diepoxy-5,6,5',6'-tetrahydro-β,β-carotene-5,5'-diol], cucurbitaxanthin A [(3S,5R,6R,3'R)-3,6-epoxy-5,6-dihydro- β , β -carotene-5,3'-diol] and B [(3S,5R,6R,3'S,5'R, 6'S)-3,6,5',6'-diepoxy-5,6,5',6'-tetrahydro- β , β -carotene-5,3'-diol] and capsanthin 3,6-epoxide [(3S,5R,6R,3'S,5'R)-3,6-epoxy-5,6-dihydro-5,3'-dihydroxy- β , κ -caroten-6'-onel, all containing the 7-oxabicyclo[2.2.1]heptyl end group have been isolated and characterized. 1,2 We have also published the isolation of 5,6-diepikarpoxanthin $[(3S,5S,6S,3'R)-5,6-dihydro-\beta,\beta-carotene-3,5,6,3'-tetrol],$ 5,6-diepilatoxanthin [(3S,5S,6S,3'S,5'R,6'S)-5',6'-epoxy-5,6,5',6' - tetrahydro - β,β - carotene - 3,5,6,3' - tetrol, and 5,6-diepicapsokarpoxanthin [(3S,5S,6S,3'S,5'R)-5,6-dihydro-3,5,6,3'-tetrahydroxy- β , κ -caroten-6'-one], which all possess the (3S,5S,6S)-trihydroxy-β-end group, and of 6-epikarpoxanthin $[(3S,5R,6S,3'R)-5,6-dihydro-\beta,\beta$ carotene-3,5,6,3'-tetrol] containing the (3S,5R,6S)-trihydroxy-β-end group, from red paprika.³ In a previous paper, 4 we described the isolation and structure elucidation of nigroxanthin (3',4'-didehydro-β,γ-carotene-3,6'diol) (1) containing the 6-hydroxy-γ-end group, but the assignment of the configuration at C(6') remained unknown. These compounds may be formed from antheraxanthin [(3S,5R,6S,3'R)-5,6-epoxy-5,6-dihydro- β,β -carotene-3,3'-diol] and violaxanthin $[(3S,5R,6S,3'S,5'R,6'S)-5,6,5',6'-diepoxy-5,6,5',6'-tetrahydro-<math>\beta,\beta$ -carotene-3,3'-diol], and their occurrence may be interrelated with the biosynthesis of the κ -end group, which has not been clarified in every detail yet.

In this paper we report on the isolation and characterization of a new carotenoid (2), for which the name 'prenigroxanthin' is proposed, from red spice paprika (Capsicum annuum, var. longum).

Nigroxanthin (1) (all-E,3R,6'S)-3',4'-Didehydro- β , γ -carotene-3,6'-diol

Prenigroxanthin (2) (all-E, 3R, 3'S, 6'S)- β , γ -carotene-3, 3', 6'-triol

Desoxylutein II (3) (all-E, 3R, 6'R)-3', 4'-Didehydro- β , γ -carotene-3-ol

Scheme 1.

Keywords: carotenoids; isolation; structure elucidation; paprika; Capsicum annuum.

* Corresponding authors. E-mail: delijos@apacs.pote.hu; hanspeter.pfander@ioc.unibe.ch

Scheme 2. Possible formation of different end groups from the 3-hydroxy-5,6-epoxides after Camara.8

Eight kilos of red paprika pods were first extracted with MeOH, then with Et₂O. After saponification, the carotenoids from the methanolic fraction were precipitated and separated by column chromatography on CaCO₃ (benzene/hexane).

Repeated column chromatography yielded 17 mg of 5,6-diepikarpoxanthin, 1 mg of 6-epikarpoxanthin, 0.5 mg of 5,6-diepilatoxanthin, 30 mg of capsorubin $[(3S,5R,3'S,5'R)-3,3'-dihydroxy-\kappa,\kappa-carotene-6,6'-dione]$, 508 mg of capsanthin $[(3R,3'S,5'R)-3,3'-dihydroxy-\beta,\kappa-caroten-6'-one]$, and 1 mg of prenigroxanthin (2) (mp 154–158°C), respectively.

The structure of compound **2** was determined by its UV-vis, CD, NMR (¹H, ¹H-¹H COSY, T ROESY) and mass spectra (Scheme 1).

The UV–vis spectrum ($\lambda_{\rm max}$, benzene: 487, 457, 434 nm, no *cis*-peak) showed that the compound contains an (all-*E*)-decaene chromophore. With NaBH₄ or HCl/AcOH no reaction took place, indicating that no carbonyl or 5,6-epoxy groups are present. The EI-MS exhibited the signal for the molecular ion at m/z 584 (100, M⁺), which corresponds to C₄₀H₅₆O₃.

For full characterization of prenigroxanthin (2) the NMR data were compared with those of nigroxanthin (1), isolated earlier from the red paprika, and of desoxylutein II (3).⁴ ¹H NMR, ¹H-¹H COSY and T ROESY experiments allowed complete ¹H signal assignments.⁵ Due to decomposition under the measuring conditions, no ¹³C NMR data were obtained. The δ (H) and $J_{\rm H,H}$ values of the 3-hydroxy- β end group are identical with the corresponding data from the literature.⁶ In the γ -end group, the axial H-C(2') and axial H-C(4') can be assigned by their ROESY signal. The coupling constant between the axial H-C(4') and the H-C(3') of 9.3 Hz and the axial H-C(2') and the H-C(3') of 10.2 Hz indicate that HO-C(3') is equatorial. Two singlets at 4.97 and 4.85 ppm typical for exocyclic

olefinic CH_2 protons correspond to the nuclei $H_2C(18')$ which may be arbitrarily named H_a and H_b .

Prenigroxanthin (2) exhibited a conservative CD spectra, which confirms the (3R)- and (3'S)-configuration, but does not give any indication for the configuration at C(6').

As the configuration at C(6') of **1** and **2** has not yet been clarified by modern spectroscopic methods, the biosynthetic pathway of paprika carotenoids was taken into account.

Recently, the capsanthin-capsorubin synthase (CCS), an enzyme catalyzing the conversion of 5,6-epoxy-end groups into κ-end groups was isolated and characterized,8 and certain similarities with the C. annuum lycopene cyclase, the enzyme catalyzing the cyclization of lycopene, were observed.⁹ The fact that CCS also exhibits lycopene cyclase activity is likely to be related to similarities in the chemical mechanisms leading to the formation of β -rings, as in β , β -carotene, and of κ-rings, as in capsanthin and capsorubin. In both mechanisms, a carbenium ion at C(5) is formed as an intermediate. On the basis of the above described reaction mechanism, we have suggested a new mechanism for the formation of 3,5,6-trihydroxy-carotenoids isolated from red paprika.³ During the enzyme catalyzed hydrolysis of 5,6-epoxy-carotenoids, the configuration at C(5) may change, but remains unchanged at C(6). Based on this biochemical aspect, we suggest the (6'S)configuration for both nigroxanthin (1) and prenigroxanthin (2) (Scheme 2).

Acknowledgements

This study, on the part of Hungarian authors, was supported by a grant from OTKA T 030271 (Hungarian Research Foundation). The financial support of the Swiss group by F. Hoffmann-La Roche Ltd., Basel,

and that of the Swiss National Foundation is gratefully acknowledged. We thank Mrs. A. Bognár and Miss Zs. Lakatos for their skilful assistance; and Dr. F. Müller (F. Hoffmann-La Roche Ltd., Basel) for recording the CD spectra.

References

- Deli, J.; Molnár, P.; Tóth, G.; Baumeler, A.; Eugster, C. H. Helv. Chim. Acta 1991, 74, 819–824.
- Deli, J.; Molnár, P.; Matus, Z.; Tóth, G.; Steck, A. Helv. Chim. Acta 1996, 79, 1435–1443.
- Deli, J.; Molnár, P.; Matus, Z.; Tóth, G.; Steck, A.; Pfander, H. Helv. Chim. Acta 1998, 81, 1233–1241.
- Deli, J.; Matus, Z.; Molnár, P.; Tóth, G.; Szalontai, G.; Steck, A.; Pfander, H. Chimia 1995, 48, 102–104.
- 5. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 1.08 (s, 6H, CH₃(16,17)), 1.16 (s, 3H, CH₃(16')), 1.31 (s, 3H, CH₃(17')), 1.49 (ψ t, J=12.4 Hz, 1H, H-2_{ax}), 1.74 (s, 3H, CH₃(18)), 1.78 (ddd, J=12.1, 3.2, 2.1 Hz, 1H, H-2_{eq}), 1.84 (dd, J=13.5, 10.2 Hz, 1H, H-2'_{ax}), 1.96 (dd, J=13.5, 4.7 Hz, 1H, H-2'_{eq}), 1.99 (s, 12H, CH₃(19,20,19',20')), 2.05 (dd,
- $J=15.7,\ 9.7\ Hz,\ 1H,\ H-4_{eq}),\ 2.38\ (ddd,\ J=15.7,\ 6.2,\ 3.2\ Hz,\ 1H,\ H-4_{ax}),\ 2.40\ (dd,\ J=13.1,\ 9.3,\ 1H,\ H-4_{ax}'),\ 2.64\ (ddd,\ J=13.1,\ 5.0,\ 1.5\ Hz,\ 1H,\ H-4_{eq}'),\ 4.0\ (m,\ 1H,\ H-3),\ 4.22\ (m,\ 1H,\ H-3'),\ 4.85\ (s,\ 1H,\ H_b-18'),\ 4.97\ (s,\ 1H,\ H_a-18'),\ 6.10\ (d,\ J=18.7\ Hz,\ 1H,\ H-7),\ 6.15\ (d,\ J=15.6\ Hz,\ 1H,\ H-7'),\ 6.16\ (d,\ J=18.7\ Hz,\ 1H,\ H-8),\ 6.16\ (d,\ J=11.5\ Hz,\ 1H,\ H-10'),\ 6.26\ (d,\ J=15.6\ Hz,\ 1H,\ H-8'),\ 6.26\ (AB\ spin\ system,\ 1H,\ H-14'),\ 6.36\ (d,\ J=15.0\ Hz,\ 2H,\ H-12,12'),\ 6.62\ (AB\ spin\ system,\ 1H,\ H-15'),\ 6.64\ (dd,\ J=15.0,\ 11.5\ Hz,\ 2H,\ H-11,11'),\ 6.64\ (AB\ spin\ system,\ 1H,\ H-15).$
- Englert, G. In *Carotenoids* Vol. 1B. *Spectroscopy*, Britton,
 G.; Liaaen-Jensen, S.; Pfander, H., Eds. NMR spectroscopy. Birkhäuser: Basel, 1995; pp. 147–260.
- 7. CD (EPA, rt): 212 (-3.35), 241 (+1.07), 273 (-2.34), 329 (+0.60); CD (EPA, -180°C): 204 (-3.40), 235 (+4.06), 279 (-9.56), 303 (-0.63), 312 (-0.28).
- 8. Bouvier, F.; Hugueney, P.; d'Harlingue, A.; Kuntz, M.; Camara, B. *Plant. J.* **1994**, *6*, 45–54.
- Hugueney, P.; Badillo, A.; Chen, H.-C.; Klein, A.; Hirschberg, J.; Camara, B.; Kuntz, M. *Plant J.* 1995, 8, 417–424.